
- Page 1 -

Upgraded Software for the W8TEE/K2ZIA
Hacker’s Guide - Version 03.0

John Price – WA2FZW

License Information

This documentation and the associated software are published under
General Public License version 3. Please feel free to distribute it,
hack it, or do anything else you like to it. I would ask, however that
is you make any cool improvements, you can let me know via any of the
websites on which I have published this or by email at
WA2FZW@ARRL.net.

Introduction

The W8TEE/K2ZIA antenna analyzer was originally developed as a club
project for the Milford Amateur Radio Club. The original author of the
software, Jack Purdum, published the design and code online on the
Yahoo SoftwareControlledHamRadio group (which has now been moved to
the SoftwareControlledHamRadio group on Groups.io). Jack also
published an article about the project in the November 2017 issue of
QST.

My main objective in modifying the software was to make it work on the
6 meter band (which requires replacing the AD9850 DDS with the higher
frequency AD9851). In the process of going through the original code
to figure out how to accomplish this, I did find a number of potential
and actual bugs in the code (Definition: Working Software – Software
with only undiscovered bugs) and came up with some enhancements to
make it easier to use. Then I got a little carried away!

This document provides an overview of what each of the functions that
make up the software do at a very high level for anyone who wants to
attempt their own modifications. You will find rather detailed
descriptions of what each function does in the comments in the
software itself.

mailto:WA2FZW@ARRL.net
https://groups.yahoo.com/neo/groups/SoftwareControlledHamRadio/info
https://groups.io/g/SoftwareControlledHamRadio/topics
http://edition.pagesuite-professional.co.uk/html5/reader/production/default.aspx?pubname=&edid=5e484781-a0fa-44c2-88f2-474e714b7287
http://edition.pagesuite-professional.co.uk/html5/reader/production/default.aspx?pubname=&edid=5e484781-a0fa-44c2-88f2-474e714b7287

- Page 2 -

My_Analyzer.h

This header file contains all the definitions of things that anyone
might want (or need) to change in order for the analyzer to operate
with the various hardware options available.

It includes the following definitions for the various DDS options:

 #define AD9850_DDS // Using the AD9850 DDS board

#define AD9851_DDS // Using the AD9851 DDS board

#define AD8307_SWR // Using AD8307 detectors

Definitions related to adding the 6 meter and/or “Custom” bands:

#define ADD_6_METERS // Enable 6 meter operation

#define LOW_6M_EDGE 50000U // 50 MHz * 1000

#define HIGH_6M_EDGE 54000U // 54 MHz * 1000

#define ADD_CUSTOM // Enable the "Custom" band

#define LOW_C_EDGE 1000U // 1MHz * 1000

#define HIGH_C_EDGE 30000U // 30MHz * 1000

Definitions of the parameters that control the “Repeat Scan” function:

 #define DEFAULT_COUNT 50 // Initial default count

#define REPEAT_INCREMENT 10 // How much to change the count

#define MIN_REPEAT_COUNT 10 // Minimum repetition count

#define MAX_REPEAT_COUNT 100 // Maximum repetition count

#define SCAN_PAUSE 1000 // Length of pause between scans

Whether or not the “Fine Tune” button had been added:

 #define FT_INSTALLED

If you want the “Examine” function to operate automatically after
using the “Single Scan”, “Repeat Scans” and “View Plot” functions, un-
comment the following line.

 #define AUTO_EXAMINE

- Page 3 -

If the definition is commented out, the “Examine” feature will still
be activated by simply moving the encoder knob one click one way or
the other.

EPROM Address Map

The following shows the addresses of things stored in the EEPROM and
the symbolic names used in the program to reference them.

Address Symbol Purpose in Life

0000 – 0001 SWR_MINS_SET Indicates minimum SWRs have been set

0002 – 0003 SWR_MINS_ADDRESS Saved SWR readings - 160M

0004 - 0005 Saved SWR readings - 80M

0006 - 0007 Saved SWR readings - 60M

0008 - 0009 Saved SWR readings - 40M

0010 - 0011 Saved SWR readings - 30M

0012 - 0013 Saved SWR readings - 20M

0014 - 0015 Saved SWR readings - 17M

0016 - 0017 Saved SWR readings - 15M

0018 - 0019 Saved SWR readings - 12M

0020 - 0021 Saved SWR readings - 10M

0022 - 0023 Saved SWR readings - 6M

0024 - 0025 Saved SWR readings - Custom

0050 – 0051 ACTIVE_BAND_SET Indicates active band data is saved

0052 – 0053 ACTIVE_BAND_INDEX Saved active band index setting

0054 – 0055 ACTIVE_BAND_BOTTOM Saved active band low freq setting

0056 – 0057 ACTIVE_BAND_TOP Saved active band high freq setting

0090 – 0091 NEXT_SD_FILE_NUMBER Saved next file sequence number

0092 EEPROM_NEXT Next available EEPROM address

Main Program Functions

The first two functions are the standard Arduino functions:

setup() Initializes all of the things needed to make it work

loop() Runs continuously; basically processes the menu functions

- Page 4 -

The functions described in the following sections are grouped
according to their primary role (although they may have secondary
roles). The order they are listed in is the same order as which they
appear in the .ino file.

Initialization Functions

The functions in this group primarily deal with setting various
variables that make everything else work.

SetActiveBand() Sets the active band an startup and may be
invoked from the “Analysis” menu.

SetBandEdge() Sets the upper and lower scan frequency range

GetBandEdge() Gets the upper and lower scan frequency range

 When needed

ReadActiveBandData() Reads the saved band and frequency information
from the EEPROM.

SaveActiveBandData() Saves active band and frequency information to
the EEPROM.

SetEEPROMMins() Sets the saved minimum SWR readings in the
EEPROM.

ReadEEPROMMins() Reads the saved minimum SWR readings from the
EEPROM.

Menu Processing Functions

These functions process the main and sub-menus

ShowMainMenu() Display the top level menu.

AlterMenuOption() Controls which main menu item is selected and
makes a selection when the encoder switch is
pushed.

ShowSubMenu() Displays one of the sub-menus.

- Page 5 -

AlterMenuDepth() Controls which sub-menu item is selected and
makes a selection when the encoder switch is
pushed.

DoAnalysis() Processes selections in the “Analysis” menu.

DoOptions() Processes selections in the “View/Save” menu.

DoMaintenance() Processes selections in the “Maintenance” menu.

Command Processing Functions

The functions in this group are responsible for executing the
individual commands initiated via sub-menu selections.

DoNewScan() Performs and displays the results of a single
scan between the preset frequency ranges.

RepeatScan() Repeats a scan between the preset frequency
ranges a specified number of times.

Examine() This is not exactly a command processing
function, but it’s called after “DoNewScan”,
“RepeatScan” and “ViewOldPlot” to allow the
operator to examine the SWR at frequencies
determined by moving the encoder knob.

DoSingleFrequency() Monitors the SWR at one specific frequency (which
can be changed while monitoring). It also
includes an “analog” SWR meter function.

SaveScan() Saves the data from the most recent scan to the
SD card.

ViewOldPlot() Displays the contents of a saved scan exactly as
it was displayed when originally performed.

PlotOverlay() Can be used to display the results of a saved
scan on the same graph as a live scan or another
saved one.

ViewTable() Displays the contents of a saved scan file in a
tabular format.

PlotToSerial() Sends the contents of a saved scan file verbatim
to the Arduino IDE’s serial monitor.

- Page 6 -

DrawBarChart() Draws the bar chart of the saved minimum SWR
values.

DeleteSingleFile() Deletes a selected single file from the SD card.

DeleteAllFiles() Deletes all of the files from the SD card.

ResetFileSeqNumber() Resets the next file sequence number provided
there are no saved scan files on the SD card.

EraseEEPROM() Completely erases the contents of the EEPROM
except the next file sequence number.

ReadEEPROM() Displays the contents of the EEPROM on the
Arduino IDE’s serial monitor.

Formatting & Display Functions

These functions either format specific data items or display specific
things on the TFT display:

Splash() Displays the startup information and credits.

FormatFrequency() Formats the internal frequency into an ASCII
string with either 2 or 3 decimal places.

FormatSWR() Formats the internal SWR into an ASCII string.

Format() General number to ASCII function (eventually will
be eliminated).

PaintText() Writes text strings of various sizes on the
screen.

EraseText() Erases text from the screen.

GraphAxis() Plots the background for the scan plots.

GraphPoints() Plots the actual scan data.

MarkMinimum() Puts the little red ‘+’ characters at the minimum
SWR points on the scan graphs.

PaintMeter() Paints the “analog” SWR meter on the display.

- Page 7 -

MovePointer() Controls the movement of the pointer on the
“analog” SWR meter.

ShowAndScroll() Part of the “View Table” function; decides which
page should be displayed and controls scrolling
between pages.

DrawTable() Displays a single page of the “View Table”
output.

DisplayFrequency() Used to display frequencies with the carat (‘^’)
character under the digit that rotating the
encoder will change.

PaintHeading() Paints the headings on the plot and table
outputs.

DDS Control Functions

These functions manipulate the DDS:

SendFrequency() Sets the DDS output to a specified frequency.

DDS_Down() Puts the DDS to sleep.

DDS_Up() Wakes the DDS up when needed.

GetNextPoint() Gets the next SWR/frequency pair when performing
a live scan.

ReadSWRValue() Reads and computes the VSWR.

SD Card Related Functions

These all have to do with things related to using the SD card:

Mount_SD() Mounts the SD card at startup or if a card wasn’t
installed at startup. Still has a bug (see the
User Manual)

CountFiles() Counts the numner of “SCANnn” files on the card.

ShowFiles() Displays a list of the “SCANnn” files on the
card.

- Page 8 -

SelectFile() Allows the operator to select a single file from
the displayed list.

SortFiles() Sorts the files by name before displaying them.

ConfirmDelete() Gives the operator the ability to cancel out of
or confirm deletion of a single file.

ConfirmDeleteAll() Gives the operator the ability to cancel out of
or confirm deleting all files.

ReadScanDataFile() Reads the scan data from a saved file.

WriteScanData() Writes the current scan to an SD file.

Display_SD_Err() General error display for SD problems.

Display_SD_Err_2() Specific sequence of error messages when there
are no “SCANnn” files on the card.

Display_SD_Err_4() Specific sequence of error messages when there is
no SD card present.

Interrupt Processing Functions

These functions handle the actual interrupts from the encoder and
“Fine Tune” button (if installed) and the subsequent processing of
those interrupts.

ReadEncoder() Handles and processes interrupts generated by
rotating the encoder knob.

ResetEncoder() Clears the flags resulting from moving the
encoder.

FT_Interrupt() Handles the direct interrupts from the “Fine
Tune” button (if installed).

ReadFT() Processes interrupts from the “Fine Tune” button
and handles the contact bounce problem.

ResetFT() Resets the variables associated with the “Fine
Tune” button.

- Page 9 -

Miscellaneous Functions

These two really don’t neatly fit into any of the previous categories:

ConfirmAction() Used where the operator is given the option to
cancel out of a previously selected function such
as deleting a file or erasing the EEPROM.

DisplayScanStruct() Conditionalized on the definition of DEBUG, this
function displays the contents of the “scan”
structure on the Arduino IDE’s serial monitor.

