
K7QO Marker Generator

The history of marker generators begins with the commercial receivers of the
early beginnings of electronics. Typical short wave receivers came with two
dials, one labeled tuning and the other labeled bandspread.

The typical receiver covered from 500kHz to 30MHz in band ranges selected
by a front panel switch. The ham bands were shown on the dial display as
extra wide lines. You would set the main tuning dial to say 7.0MHz and then
tune within the range of the 40 meter band using the bandspread dial.

The problem was setting the dial to the correct frequency. Especially if you
were going to use the receiver with a VFO tuned transmitter. How would you
determine the band limits accurately? To do this required the use of a 100kHz
crystal used in an oscillator that was rich in harmonics all the way past 30MHz.
The unit was usually an additional option that was purchased at the time you
bought the receiver or later from a local dealer or by mail order. Remember.
This was before the days of the Internet.

On the next page is a picture of the Drake 2A receiver. Many of us have
owned one at one time or another. You can see the dial layout clearly in this
photograph. Note the third switch from the left labeled CAL for the optional
crystal calibrator. You would turn the calibrator on and tune to one of the
100kHz positions on the dial and zero beat the tone. Then you would slide the
display to move the corresponding reading to match the vertical red pointer
to finish the calibration sequence.

Here is a photograph of the crystal calibrator module that was an option for
the Drake 2A receiver. The module plugged into its octal plug location in the
back of the receiver, which was open. There was no back plate on the receiver.

The VE3DNL Marker Generator

Glen Leinweber, VE3DNL, in July 1995 posted on the QRP-L mail reflector a
schematic for his marker generator that used a Motorola MC14060 integrated
ciruit to generate regularly spaced signals at 5, 10, 20 and 40kHz. The 14060
was a binary divider that took the crystal frequency 5.120MHz and divided
it down to each of the signals given above. If you have done anything with
binary numbers and computers, you recognize 512 as 2 raised to an integer
power. If you divide 5.120MHz by 1024 you get 5kHz, division by 512 gets you
10kHz and so forth.

The marker generator was made as a kit by the Ft Smith AR QRP club and then
later done by the NorCal QRP club. At the time there was a supply of 5.120MHz
crystals readily available from several sources for reasonable pricing. That is
no longer the case.

Here is a photograph of the NorCal VE3DNL marker generator from their web
page. Remember the kit is no longer available.

You will note that the frequency spacing is determined by which output pad
you connected a wire to. There are several ways to do this without having to
have a wire soldered to a pad. You can use header pins and other mechanical
systems to change the location of the wire to the outside world.

BTW, here is the schematic for the VE3DNL marker generator for reference
purposes.

Also, one more important note. The supply voltage for the generator is 9V.
This means that the square waves will have an amplitude of approximately
9V. This is important for determining the signal levels at each point in the
entire spectrum generated. This is for those of you that already own a VE3DNL
marker generator and want a comparison to the K7QO generator.

The K7QO marker generator

Early in the life of the Microchip microprocessor chips, I purchased a PICKit 1
from Microchip for the purpose of experimentation with the 12F508 8-bit pro-
cessor. One of the first things I did was use the 12F508 as a marker generator.
Nothing became of the project until now.

With the difficulty in finding 5.12MHz crystals, unless one wants to get a bid
from a China crystal manufacturer for about $125 to get 1,000 crystals. Fine
for a club project or company, but not for an individual.

I chose to use the 12F508 with a 4.000MHz crystal to generate the desired
square wave forms for four frequency intervals - 5, 10, 25 and 50 kHz. These
are about all one needs for a number of functions. You may ask, if you know
anything about the Microchip line of processors, why I did not use the internal
oscillator? The RC time constant has too much jitter in it to be comfortable to
use.

The design uses one output pin of the microprocessor chip and you select the
desired frequency interval with the aid of the push button. Two output pins are
used to drive the LEDs to give you an indicator for the range selected.

The kit uses a coin sized battery cell for power to make the unit small. I made
the prototype using a 9V battery and a 5V regulator. The owners of QRPGuys
did the board layout using a 3.3V coin sized battery cell. I asked that pads be
added to allow you to use an external 5.0V power source, if you want or need
higher signal levels. Be sure to remove the battery or you will destroy the
battery and possibly the marker generator. Also, the microprocessor will not
survive a voltage source very much greater than 5.0V. You have been warned.

Since the signal is generated from a square wave, the even harmonics of the
output will not be as strong as the odd harmonics of the fundamental frequen-
cies. This effect can be used to test receiver sensitivity and to aid in peaking
circuits where the adjacent odd harmonic is overloading or too loud for sensi-
tive adjustments. Just use the even harmonic frequencies for your tests.

The following sections show some valuable uses for the generator. You can
probably think of some more yourself.

Frequency Calibration

For calibrating the K7QO marker generator there are several methods.

One is to use a commercial receiver with a digital display. Tune the radio to a
frequency that is a multiple of 100 kHz and turn on the marker generator and
adjust the trim capacitor to zero beat with the receiver.

If you have a general coverage receiver, then tune in WWV on one of the
frequencies of 2.5, 5.0, 10,0 or 15.0MHz and zero beat the signal output from
the marker generator to the carrier frequency of the WWV signal. Try to use
as small an antenna on the general coverage receiver in order to hear the
signal from the marker generator if you can not input the signal direct from
the generator to the antenna of the receiver.

This may require some experimentation on your part.

Handy RF signal source

Because the signal generator is rich in harmonics, it makes a cheap and handy
RF signal source. You do not have to tune a signal generator to get a signal
near the tuning range of your receiver.

Receiver adjustment for peak input response

One of the first things you usually do after completing a receiver project is the
need to peak the input signal path for maximum output at the speaker. This
usually involves adjusting trimmer capacitors with an RF signal input at the
antenna terminal.

The nice thing about the signal generator is that you get RF signals from the
VLF frequency range and into the VHF range, with the strength of the signals
decreasing as you go higher in frequency. I have made some charts showing
the signal strength in 2MHz increments up to 20 MHz for a reference. These
are done with a TenTec 585 Paragon transceiver with a calibrated S-meter. I
did the S-meter calibration with a Wavetek 3010 signal generator at the 50μV
level at a number of points from 1.8MHz to 21MHz.

For adjustment of your just finished receiver you turn on the receiver and
the K7QO marker generator and tune in one of the signals. Then adjust the
trimmers for maximum signal response. Use the instructions provided with
the receiver or transceiver to do this correctly.

One additional piece of information. If your receiver uses an even IF frequency,
say 4.000MHz, 8.000MHz, 9.000MHz or whatever, there is the possibility that
you will hear a faint constant tone even as you tune around the band. This is
one of the signal points beating against the BFO frequency. Just ignore it in
doing the adjustments.

The peaking of the receiver can be done at any time of the day or night and
the band does not have to be open to get a signal.

Receiver dial calibration markings

With homebrew receivers and homebrew enclosures for non-digital displays,
the marker generator is handy as an input source to determine marking place-
ments on the front panel or dial for 5 and 10 kHz spacings and then you evenly
divide the desired markings between these points.

Receiver tuning bandwidth

If you want to see how much of the frequency spectrum your homebrew re-
ceiver or kit covers, then set the marker generator to an interval of 5KHz and
count the number of spots you can hear from the lowest point in the tuning
range to the highest frequency you can receive.

You will have to estimate the 1 kHz intervals, but you should be able to get
close.

Measure receiver drift

Because the marker generator is crystal controlled there is no drift. If you
have a computer with an accurate audio frequency measuring program, you
can start up the receiver from a cold start and both measure the drift and time
line from the computer program. Just tune in a frequency tone near zero and
then start plotting the drift from a cold start.

Oscilloscope probe alignment

Ever wonder about the trimmer capacitor adjustment on your oscilloscope
probes? It is there to trim the probe to get better impedance matching be-
tween the scope input circuits and the probe.

Set the marker generator to 50kHz output intervals and input the signal into

you oscilloscope. Adjust the time display on your scope to display one or two
square wave intervals. Adjust the waveform height to fill the scope display.

Now adjust the trimmer cap on the probe to get the best square waveform
on the display that you can. Deformation in the waveform is seen as small
oscillations at the constant voltage levels at the peak and minimum of the
waveform. You will easily catch on to the effect as you adjust the trimmer.

You can also see you response time of your scope as the output from the
Microchip microprocessor is just about the best square wave you can get. This
is good news and this is bad news. The bad news is that a square wave with a
50% duty cycle has no even harmonics.

I can generate the code in the microprocessor to move the duty cycle but
because of the button polling the higher frequency intervals would have to be
eliminated.

Signal Strength Measurements

The following charts are made using the K7QO marker generator and a TenTec
Paragon transceiver. The S-meter was calibrated using a Wavtek 3010 sig-
nal generator and several S-9 generators from Elecraft and the NorCal club
projects. These charts are for showing relative signal strength between ad-
jacent signals at the frequencies shown and show the low end of the most
popular ham bands.

Note. There is a tradeoff in the frequency interval output signal and the signal
strength. For the highest strength signal use 100 kHz output. As you decrease
the frequency interval value the signal strength will decrease.

Think of it this way. You have so much energy generated by the amplitude of
the wave, say 3.3V when using the battery cell. That energy is divided up into
all the signals. Because you have more signal points for the smaller frequency
intervals the signal strength will be reduced for each point. You will see this
effect in the following tables. Some receivers may not have the sensitivity to
easily hear the smaller levels. Helps to determine receiver response.

An S9 signal strength on the S-meter is from the response to a 50μV RMS

signal on the antenna terminal input.

The numbers in the tables are what one can expect on a calibrated receiver,
but these numbers are not be construed as the final universal numbers for
these measurements. They are meant to be used as a guideline only.

50kHz 3.3V
frequency S-meter frequency S-meter
20.000Mhz S4.5 20.050Mhz S7.0
18.000Mhz S5.0 18.050Mhz S7.5
16.000Mhz S5.2 16.050Mhz S7.8
14.000Mhz S5.5 14.050Mhz S8.0
12.000Mhz S6.0 12.050Mhz S8.8
10.000Mhz S6.0 10.050Mhz S9.0
8.000Mhz S6.2 8.050Mhz 3dB/S9
7.000Mhz S6.5 7.050Mhz 5dB/S9
6.000Mhz S6.5 6.050Mhz 8dB/S9
4.000Mhz S6.9 4.050Mhz 11dB/S9
2.000Mhz S6.9 2.050Mhz 21dB/S9

50kHz 5.2V
frequency S-meter frequency S-meter
20.000Mhz S2.9 20.050Mhz S7.9
18.000Mhz S3.2 18.050Mhz S8.8
16.000Mhz S4.2 16.050Mhz S9.0
14.000Mhz S5.5 14.050Mhz 9.5dB/S9
12.000Mhz S5.5 12.050Mhz 9.8dB/S9
10.000Mhz S6.0 10.050Mhz 10dB/S9
8.000Mhz S6.0 8.050Mhz 12dB/S9
7.000Mhz S6.4 7.050Mhz 15dB/S9
6.000Mhz S6.5 6.050Mhz 16dB/S9
4.000Mhz S6.5 4.050Mhz 20dB/S9
2.000Mhz S7.0 2.050Mhz 26dB/S9

25kHz 3.3V
frequency S-meter frequency S-meter
20.000Mhz S2.0 20.025Mhz S4.3
18.000Mhz S3.2 18.025Mhz S5.1
16.000Mhz S3.0 16.025Mhz S4.5
14.000Mhz S3.5 14.025Mhz S5.5
12.000Mhz S4.0 12.025Mhz S7.1
10.000Mhz S4.5 10.025Mhz S7.5
8.000Mhz S4.5 8.025Mhz S7.8
7.000Mhz S4.9 7.025Mhz S8.0
6.000Mhz S5.1 6.025Mhz S8.6
4.000Mhz S5.2 4.025Mhz 2dB/S9
2.000Mhz S6.0 2.025Mhz 12dB/S9

25kHz 5.2V
frequency S-meter frequency S-meter
20.000Mhz S0+ 20.025Mhz S6.8
18.000Mhz S1.0 18.025Mhz S7.5
16.000Mhz S2.0 16.025Mhz S7.9
14.000Mhz S4.5 14.025Mhz S8.5
12.000Mhz S4.3 12.025Mhz S8.9
10.000Mhz S4.8 10.025Mhz 1dB/S9
8.000Mhz S4.5 8.025Mhz 3dB/S9
7.000Mhz S5.2 7.025Mhz 5dB/S9
6.000Mhz S5.5 6.025Mhz 8dB/S9
4.000Mhz S5.5 4.025Mhz 12dB/S9
2.000Mhz S5.9 2.025Mhz 20dB/S9

10kHz 3.3V
frequency S-meter frequency S-meter
20.000Mhz S1.0 20.010Mhz S3.9
18.000Mhz S2.2 18.010Mhz S4.3
16.000Mhz S1.5 16.010Mhz S4.6
14.000Mhz S2.6 14.010Mhz S5.0
12.000Mhz S2.0 12.010Mhz S5.6
10.000Mhz S3.2 10.010Mhz S5.8
8.000Mhz S3.0 8.010Mhz S6.3
7.000Mhz S3.5 7.010Mhz S6.7
6.000Mhz S3.5 6.010Mhz S6.9
4.000Mhz S3.5 4.010Mhz S7.3
2.000Mhz S4.2 2.010Mhz S8.8

10kHz 5.2V
frequency S-meter frequency S-meter
20.000Mhz S1.9 20.010Mhz S5.0
18.000Mhz S2.6 18.010Mhz S5.8
16.000Mhz S2.0 16.010Mhz S6.3
14.000Mhz S3.0 14.010Mhz S6.5
12.000Mhz S2.0 12.010Mhz S6.9
10.000Mhz S3.2 10.010Mhz S7.2
8.000Mhz S1.8 8.010Mhz S7.6
7.000Mhz S3.3 7.010Mhz S7.9
6.000Mhz S3.6 6.010Mhz S8.1
4.000Mhz S3.6 4.010Mhz S8.8
2.000Mhz S4.3 2.010Mhz 8dB/S9

5kHz 3.3V
frequency S-meter frequency S-meter
20.000Mhz S1.0 20.005Mhz S2.0
18.000Mhz S1.5 18.005Mhz S3.2
16.000Mhz S1.0 16.005Mhz S3.5
14.000Mhz S1.5 14.005Mhz S3.7
12.000Mhz S1.2 12.005Mhz S4.2
10.000Mhz S2.0 10.005Mhz S4.5
8.000Mhz S1.5 8.005Mhz S4.8
7.000Mhz S2.0 7.005Mhz S5.0
6.000Mhz S2.5 6.005Mhz S5.4
4.000Mhz S2.5 4.005Mhz S6.0
2.000Mhz S3.2 2.005Mhz S7.2

5kHz 5.2V
frequency S-meter frequency S-meter
20.000Mhz S2.5 20.005Mhz S4.0
18.000Mhz S1.8 18.005Mhz S4.3
16.000Mhz S2.8 16.005Mhz S4.7
14.000Mhz S1.8 14.005Mhz S5.0
12.000Mhz S1.8 12.005Mhz S5.5
10.000Mhz S2.0 10.005Mhz S5.9
8.000Mhz S1.5 8.005Mhz S6.2
7.000Mhz S2.1 7.005Mhz S6.5
6.000Mhz S2.5 6.005Mhz S6.8
4.000Mhz S2.5 4.005Mhz S7.3
2.000Mhz S3.2 2.005Mhz S8.5

MPASM 5.70 ../../MARKER/K7QO_MARKER_GENERAT 1-9-2017 15:22:12 PAGE 1

LOC OBJECT CODE LINE SOURCE TEXT

VALUE

00001 Title "K7QO Marker Generator"

00002

00003 #include <p12f508.inc>

00001 LIST

00002

00003 ;==

00004 ; Build date : Sep 13 2016

00005 ; MPASM PIC12F508 processor include

00006 ;

00007 ; (c) Copyright 1999-2016 Microchip Technology, All rights reserved

00008 ;==

00009

00158 LIST

00004 list p=12f508

00005

00000010 00006 FREQ EQU 10 ; general register for current frequency

00000011 00007 counterh EQU 11

00000012 00008 counterl EQU 12

00009

00010 ; K7QO marker generator for the 12F508

00011 ; pin 5 is output

00012 ; pin 4 is push button for state change

00013 ; must use 4MHz crystal for osc or jitter will occur

00014

0FFF 0001 00015 __CONFIG _MCLRE_ON && _CP_ON && _WDT_OFF && _XT_OSC

00016

00017 org h’0000’

0000 0000 00018 nop

0001 00019 start

0001 0C40 00020 movlw h’40’ ;

0002 0002 00021 OPTION

0003 0C38 00022 movlw h’38’ ; GP0, GP1 and GP2 output and GP3 input

0004 0006 00023 TRIS GPIO

00024

0005 02B0 00025 incf FREQ,F ; move to the next frequency output value

0006 0210 00026 movf FREQ,W ; load freq to bit bang the contents

0007 0E03 00027 andlw h’03’ ; keep only the two low order bits

0008 0030 00028 movwf FREQ ; put current value back into freq

00029

0009 01E2 00030 addwf PCL,F ; generate branch into following table of jumps

000A 0A?? 00031 goto f_50k_st

000B 0A?? 00032 goto f_25k_st

000C 0A?? 00033 goto f_10k_st

000D 0A?? 00034 goto f_5k_st

00035

00036

000E 00037 f_50k_st

000E 0C00 00038 movlw h’00’ ; turn on top LED to show 50KHz frequency

000F 0026 00039 movwf GPIO

0010 0C04 00040 f_50k movlw h’04’

0011 01A6 00041 xorwf GPIO,F

0012 0766 00042 btfss GPIO,3 ; see if button depressed

0013 0A?? 00043 goto change_freq ; yes, increment routine section

0014 0000 00044 nop

0015 0000 00045 nop

0016 0000 00046 nop

0017 0000 00047 nop

0018 0A?? 00048 goto f_50k

00049

0019 00050 f_25k_st

0019 0C01 00051 movlw h’01’ ; turn on first LED to show 25KHz frequency

001A 0026 00052 movwf GPIO

001B 0C04 00053 f_25k movlw h’04’

001C 01A6 00054 xorwf GPIO,F

001D 09?? 00055 call delay_5

001E 09?? 00056 call delay_5

001F 0766 00057 btfss GPIO,3 ; see if button depressed

0020 0A?? 00058 goto change_freq

0021 0000 00059 nop

0022 0000 00060 nop

0023 0000 00061 nop

0024 0000 00062 nop

0025 0A?? 00063 goto f_25k

00064

0026 00065 f_10k_st

0026 0C02 00066 movlw h’02’ ; turn on second LED

0027 0026 00067 movwf GPIO

0028 0C04 00068 f_10k movlw h’04’

0029 01A6 00069 xorwf GPIO,F

002A 09?? 00070 call delay_10

002B 09?? 00071 call delay_10

002C 09?? 00072 call delay_10

002D 09?? 00073 call delay_10

002E 0766 00074 btfss GPIO,3

002F 0A?? 00075 goto change_freq

0030 0000 00076 nop

0031 0000 00077 nop

0032 0000 00078 nop

0033 0000 00079 nop

0034 0A?? 00080 goto f_10k

00081

0035 00082 f_5k_st

0035 0C03 00083 movlw h’03’ ; turn on both LEDs

0036 0026 00084 movwf GPIO

0037 0C04 00085 f_5k movlw h’04’

0038 01A6 00086 xorwf GPIO,F

0039 09?? 00087 call delay_10

003A 09?? 00088 call delay_10

003B 09?? 00089 call delay_10

003C 09?? 00090 call delay_10

003D 09?? 00091 call delay_10

003E 09?? 00092 call delay_10

003F 09?? 00093 call delay_10

0040 09?? 00094 call delay_10

0041 09?? 00095 call delay_10

0042 0766 00096 btfss GPIO,3

0043 0A?? 00097 goto change_freq

0044 0000 00098 nop

0045 0000 00099 nop

0046 0000 00100 nop

0047 0000 00101 nop

0048 0A?? 00102 goto f_5k

00103

0049 09?? 00104 delay_10 call delay_5

004A 0000 00105 delay_5 nop

004B 0804 00106 delay_4 retlw h’04’

00107

004C 00108 change_freq

004C 09?? 00109 call delay ; let’s debounce the switch

004D 09?? 00110 call delay ; give a little more time for finger removal

004E 0A?? 00111 goto start ; rerun program with new frequency

00112

004F 02F2 00113 delay decfsz counterl,f

0050 0A?? 00114 goto delay

0051 02F1 00115 decfsz counterh,f

0052 0A?? 00116 goto delay

0053 0804 00117 retlw h’04’

00118

0001 00119 end

:020000040000FA

:100000000000400C0200380C0600B0021002030E83

:100010003000E2010E0A190A260A350A000C2600F1

:10002000040CA60166074C0A000000000000000056

:10003000100A010C2600040CA6014A094A096607A9

:100040004C0A00000000000000001B0A020C260001

:10005000040CA601490949094909490966074C0ADE

:100060000000000000000000280A030C2600040C19

:10007000A60149094909490949094909490949099B

:100080004909490966074C0A000000000000000009

:10009000370A4A09000004084F094F09010AF20211

:0800A0004F0AF1024F0A0408A7

:0400A8000008000844

:021FFE000100E0

:00000001FF

